New to RF: Circuit Design

Gain the knowledge of key analytical tools for high frequency design, such as S-parameters and the Smith Chart. Learn the design considerations for components are used in RF & wireless systems (LNA's, PA's, mixers, etc.) as well as their performance parameters and limitations.

Applied RF Engineering I - Circuits and Transmission Lines (270)

Based on Les Besser's famous RF course material, this program has been reworked and updated to meet the needs of today's engineers looking for online self-paced study. Video lectures are followed by our exclusive online workbooks featuring interactive problem sets and quizzes along with optional supplemental reading for those who wish to explore topics in more depth. A bonus guest tutorial from a Besser Associates instructor offers a different perspective on one of the topics covered in the course (guest tutorials vary by course offering). This course is the first part of an RF Engineering Certificate program currently under development by Besser Associates.

Even when working with "off the shelf" integrated radio products, engineers still need a basic understanding of circuit operation and design considerations to assure a successful product implementation and avoid unexpected pitfalls. Switching from traditional circuit definitions based on voltages and currents, to power-flow concepts and scattering parameters, this course offers engineers a smooth transition into understanding circuit operation in the RF and wireless domain. We review S-parameter measurements and applications for both single-ended (unbalanced) and balanced circuits. Impedance matching is vitally important in RF systems and we use both graphical (Smith Chart ) and analytical techniques throughout the course. We also examine discrete and monolithic component models in their physical forms, discussing parasitic effects and losses, revealing reasons why circuit elements behave in surprising manners at RF. 

Since wires and printed circuit conductors may behave as transmission line elements, we also cover microstrip and stripline realizations. Another important consideration is circuit layout, therefore we look at problems caused by coupling, grounding and parasitic resistance.


 Feb 13-Jul 14, 2023:  RF Certifications Online, Besser Associates Online Academy: Presented by: Rex Frobenius
 Jun 19-Nov 20, 2023:  RF Certifications Online, Besser Associates Online Academy: Presented by: Rex Frobenius

RF Wireless Circuits, Systems and Test Fundamentals - Online (112)


 :  On Demand, Besser Associates Online Academy: Presented by: Rick Fornes

Applied RF Techniques I (001)

This course covers passive components and linear active devices such as low noise amplifiers. The material is covered at an in-depth level that is suitable for designers. In order to understand all of the components in wireless systems, students should also take a course in non-linear active circuits (power amplifiers, mixers, oscillators).

RF Design: Core Concepts - Web Classroom (247)

This course is the first in a series for RF Design engineers and other professionals in that field. It presents core concepts essential in understanding RF technology and presents circuit-level designers with the foundation needed to work effectively with high frequency electronics. Participants gain analytical, graphical ( Smith Chart ), and computer-aided techniques to analyze and optimize RF circuits in practical situations. This course reviews traditional circuit definitions based on voltages and current and transitions to power-flow concepts and scattering parameters (S-parameters) used in the wireless domain. The material covered forms the foundation for follow-on courses dealing with specific RF and Microwave circuit and component design. This seminar contains material typically covered in one full day of instruction but is divided into five 90 minute web-classroom presentations.

This course is intended for registered individual students only. Please contact us for group rates at info@besserassociates.com or 650-949-3300. Recording, copying, or re-transmission of classroom material is prohibited.

Browse Courses