Transceiver and Systems Design for Digital Communications

Course 208

 Request information about bringing this course to your site.

 Feb 28-Mar 02, 2018 -  San Diego, CA / Scott Bullock

$1,795 until 02/01/2018, then $1,895

  Register now! or Save a seat

Summary

This seminar provides an intuitive approach to transceiver design for both commercial and military sectors, allowing a broad spectrum of readers to understand the topics clearly. It covers a wide range of data link communication design techniques, including link budgets, dynamic range and system analysis of receivers and transmitters used in data link communications, digital modulation and demodulation techniques of phase-shift keyed and frequency hopped spread spectrum systems using phase diagrams, multipath, gain control, an intuitive approach to probability, jamming reduction method using various adaptive processes, error detection and correction, global positioning systems (GPS) data link, satellite communications, direction-finding and interferometers, plus a section on broadband communications and home networking including Link 16, JTRS, military radios, and networking. Also included is a section on Cognitive Systems. Various techniques and designs are evaluated for modulating and sending digital data. Thus the student gains a firm understanding of the processes needed to effectively design wireless data link communication systems.

Students will receive a copy of the instructor's textbook, Transceiver and Systems Design for Digital Communications

Learning objectives

Upon completing the course you will be able to:

  • Perform link budgets for communication links including spread spectrum, system design tradeoffs, BER, Eb/No, EIRP, free-space loss, process gain, coding gain and link margin.
  • Evaluate the performance of different types of wireless communication transceivers including PSK, FSK, MSK, QAM, CP-PSK, PRS code generator, multiple access techniques, TDMA, CDMA, FDMA, PAs, VSWR, LOs, and sideband elimination
  • Analyze and understand different communication methods including spread spectrum modems using maximum power transfer principle, digital versus analog, SDRs and cognitive radios, multiple access systems, OFDM, and error detection/correction, Gold codes, maximal length sequence codes, code taps, jamming margin, power control, time hopping, chirped-FM, spectral regrowth, and shaping filters
  • Understand superheterodyne, dynamic range, 2-tone DR, SFDR, IMDs, phase noise, group delay and compensation, sampling theorem and aliasing, and DSPs
  • Analyze and model AGC systems using control theory, loop filters, integrator for zero steady state error, and PLL/AGC commonalities
  • Understand demodulation techniques, matched filter, correlators, PPM, coherent vs differential, carrier recovery loops, Costas and squaring loops. symbol synchronizer, eye pattern, ISI, scrambler/descrambler, and Shannon’s limit
  • Understand basic probability and pulse theory, gaussian process, quantization and sampling errors, probability of error, probability of detection and false alarms, error detection and correction, CRCs, FECs, interleaving, linear block codes, hamming, convolutional, turbo, and other codes, viterbi decoder, and Multi-h
  • Understand multipath and techniques on how to reduce multipath and jammers, specular and diffuse, mitigation techniques, and antenna diversity
  • Analyze techniques to reduce jammers using burst clamps, adaptive filters, GSOs, and evaluate intercept receivers
  • Understand GPS and the data link used for sending information, how to mitigate errors using different techniques, narrow correlator, SA, differential, relative, KCPT, and other satellite positioning systems
  • Understand satellite communications and the uses, and evaluate data links for G/T, ADPCM, geosynchronous, geostationary, antennas, FSS, propagation delays, cost and regulations, and types of satellites
  • Understand the techniques used for broadband communications in both commercial and military radios including mobile users, distribution, IEEE 802.xx, Bluetooth, WiMAX, networking, SDRs, JTRS, Link 16, clusters, gateways, stacked nets, and time slot reallocation
  • Analyze a 3 dimension Direction Finding system using basic two antenna interferometer using direction cosines and coordinate conversions

Target Audience

This course will be of interest to RF, analog, digital, systems and software engineers and managers who are interested in the field of communications of all types of wireless systems for both commercial and military use. This applies to both those that want to gain an understanding of basic wireless communications and those that are experienced engineers that want to capture an intuitive approach to wireless data link design. An electrical engineering background (BSEE or equivalent practical experience) is recommended but not required. From this course you will learn how to evaluate and develop the system design for digital communication transceivers including spread spectrum systems and more.

Outline

Day One

Transceiver Design and Link Budget
 • Signal Frequency of Operation • Link Budget • Power in dBm • Transmitter gain and losses • EIRP • the Channel • Free-Space Attenuation • Propagation Losses • Multipath Losses • Receiver gain and losses • LNA • noise figure • Eb/No • coding gain • process gain • link budget example • spreading losses
The Transmitter
 • Transmitter Basic Functions • Antenna • T/R • PA • upconversion • VSWR • maximum power transfer principle • digital Communications • Digital versus Analog Communications • Software Defined Radios and Cognitive Radios • Digital Modulation - PSK, BPSK, DPSK, QPSK, OOPSK, 8-PSK, 16-QAM • phasor constellations and noise immunity • CP-PSK • spectral regrowth • MSK, FSK sidelobe reduction and shaping filters • DSSS • FHSS • anti-jam • process gain • maximal length sequence codes and taps • Gold codes • spectral lines • time hopping chirped-FM • multiple access techniques • OFDM • power control
The Receiver
 • Superheterodyne Receiver • antennas • T/R switch • limiters • Image Reject Filter/Band Reject Filter • Dynamic Range/Minimum Detectable Signal • Types of DR • Two-Tone • SFDR • IMDs • Tangential Sensitivity • LNAs • multiple bands • phase noise • mixers • filters • group delay
AGC Design and PLL Comparison
 • AGC modeling • AGC Amplifier Curve • Linearizers • Detector • Loop Filter • Threshold Level • Integrator • Control Theory Analysis • AGC Design Example • Modulation Frequency Distortion • Comparison of the PLL and AGC Using Feedback Analysis Techniques • Basic PLL • Comparisons of the PLL and AGC • Feedback Systems and Oscillations

Day Two

Demodulation Techniques
 • Types of Demodulation • Pulsed Matched Filter • Digital Matched Filter Correlator • PPM • Code Division Encoding and Decoding, Coherent versus Differential Digital Modulation and Demodulation • Carrier Recovery • Squaring Loop • Costas Loop • Modified Costas Loop and AFC Addition • Despreading Correlator • Symbol Synchronizer • The Eye Pattern • Digital Processor • ISI • Scrambler/Descrambler • Phase-Shift Detection • Shannon’s Limit
Basic Probability and Pulse Theory
 • The Gaussian Process • Quantization and Sampling Errors • Probability of Error • Probability of Detection and False Alarms • Error Detection and Correction • Parity • Checksum • CRC • Redundancy • FEC • Interleaving • Linear Block Codes • Hamming Code • Convolutional Codes • Viterbi Decoder • Multi-h • Turbo codes • LDPC
Multipath
 • Basic Types of Multipath • Specular Reflection on a Smooth Surface • Specular Reflection on a Rough Surface • Diffuse Reflection • Curvature of the Earth • Pulse Systems (Radar) • Vector Analysis Approach • Power Summation Approach • Multipath Mitigation Techniques • Antenna Diversity
Improving the System Against Jammers
 • Burst Jammer • Adaptive Filter • Digital Filter Intuitive Analysis • Basic Adaptive Filter • LMS Algorithm • Digital/Analog ALE • Wideband ALE Jammer Suppressor Filter • Digital Circuitry • Simulation Results • Amplitude and Phase Suppression • Gram-Schmidt Orthogonalizer • Basic GSO • Adaptive GSO Implementation • Intercept Receiver Comparison

Day Three

Global Navigation Satellite Systems
 • Satellite Transmissions • Data Signal Structure • GPS Receiver • Atmospheric Errors • Multipath Errors • Narrow Correlator • SA • Carrier Smoothed Code • Differential GPS • DGPS Time Synchronization • Relative GPS • Doppler • KCPT • Double Difference • Wide Lane/Narrow Lane
Satellite Communications
 • General Satellite Operation • Frequencies • Modulation • ADPCM • Fixed Satellite Service • Geosynchronous and Geostationary Orbits • Ground Station Antennas • Noise and the Low-Noise Amplifier • Equivalent Temperature Analysis • G/T • satellite link budget • Carrier Power/Equivalent Temperature • Multiple Channels in the Same Frequency Band • Multiple Access Schemes • Propagation Delay • Cost for Use of the Satellites • Regulations • Types of Satellites Used for Communications • System Design for Satellite Communications
Broadband Communications and Networking
 • Mobile Users • Types of Distribution Methods for the Home • Power Line Communications • OFDM • Home Phoneline Networking Alliance • Radio Frequency Communications • IEEE 802.11 • Bluetooth • WiMAX • Military Radios and Data Links • JTRS • SDRs • SCA compliance • Waveforms • Network Challenge • Gateway and Network Configurations • Link 16 • Link 16 Modulation • TDMA • “Stacked” Nets • Time Slot Reallocation • Bit/Message Structure
Cognitive Systems
 • Cognitive Radio • Cognitive hardware and software • Cognitive antennas • MIMO Techniques • Adaptive Power Control • Dynamic Spectrum Allocation • Adaptive Frequency Control • Network Re-Configuration • Multi-Hop Techniques • Cognitive System Approach
Direction finding and Interferometer Analysis
 • Interferometer Analysis • Direction Cosines • Basic Interferometer Equation • Three-Dimensional Approach • Antenna Position Matrix • Coordinate Conversion Due to Pitch and Roll • Using Direction Cosines • Alternate Method